menu
person

Задачи для самостоятельной работы

Задачи для самостоятельной работы

  1. Вероятность выбора отличника на факультете равна 1/7. Из 28 студентов группы наудачу вызываются три студента. Определить вероятности всех возможных значений числа отличников, которые могут оказаться среди вызванных трех студентов.

  2. Всхожесть клубней картофеля равна 80 %. Сколько нужно посадитьклубней, чтобы наивероятнейшее число взошедших из них было равно 100?

  3. В автопарке 70 машин. Вероятность поломки машины 0,2. Найти наивероятнейшее число исправных, автомобилей и вероятность этого числа.

  4. Два равносильных противника играют в шахматы. Что для каждого из них вероятнее выиграть: а) одну партию из двух или две из четырех; б) не менее двух партий из четырех или не менее трех партий из пяти. Ничьи во внимание не принимаются.

  5. В пчелиной семье 5 000 пчел. Вероятность заболевания в течение дня равна 0,001 для каждой пчелы. Найти вероятность того, что в течение дня заболеет более чем одна пчела.

  6. Установлено, что виноградник поражен вредителями в среднем на 10 %. Определить вероятность того, что из десяти проверенных кустов винограда один будет поражен.

  7. На факультете 900 студентов. Вероятность дня рождения каждого студента в данный день равна 1/365. Найти вероятность того, что найдутся три студента с одним и тем же днем рождения.

  8. В семье пять детей. Считая вероятности рождений мальчика и девочки одинаковыми, найти вероятность того, что среди этих детей: а) два мальчика; б) не более двух мальчиков; в) более двух мальчиков; г) не менее двух и не более трех мальчиков.

  9. Сколько раз нужно подбросить игральную кость, чтобы наивероятнейшее число выпадения 6 очков было равно 50?

  10. Станок-автомат делает детали. Вероятность того, что деталь окажется бракованной, равна 0,01. Найти вероятность того, что среди 200 деталей окажется ровно четыре бракованных.

  11. Вероятность невыхода на работу из-за болезни равна 0,01 для каждого работника предприятия. Определить вероятность того, что в ближайший день не выйдет на работу хотя бы один из работников. Численность работников составляет 500 человек.

  12. Вероятность получения отличной оценки на экзамене равна 0,2.Найти наивероятнейшее число отличных оценок и вероятность этого числа, если сдают экзамен 75 студентов.

  13. Всхожесть семян составляет 80 %, какова вероятность того, что из 1 000 посеянных семян взойдут от 650 до 760?

  14. Отдел контроля проверяет на стандартность 900 деталей. Вероятность того, что деталь стандартна, равна 0,9. С вероятностью 0,9544 найти границы, в которых будет заключено число стандартных деталей.

  15. В автопарке имеется 400 автомобилей. Вероятность безотказной работы каждого из них равна 0,9. С вероятностью 0,95 определить границы, в которых будет находиться доля безотказно работавших машин в определенный момент времени.

Категория: Мои статьи | Добавил: ksli1024 (31.01.2017)
Просмотров: 2017 | Рейтинг: 0.0/0
Всего комментариев: 0
avatar